Simplicial Chern–Weil theory for coherent analytic sheaves, part II
نویسندگان
چکیده
In the previous part of this diptych, we defined notion an admissible simplicial connection, as well explaining how H.I. Green constructed a resolution coherent analytic sheaves by locally free on \v{C}ech nerve. This paper seeks to apply these abstract formalisms, showing that Green's barycentric connection is indeed admissible, and condition exactly what need in order be able Chern-Weil theory construct characteristic classes. We show that, case (global) vector bundles, construction agrees with one might manually: explicit representatives exponential Atiyah classes bundle agree. Finally, summarise all preceding fits together allow us define Chern sheaves, uniqueness compact case.
منابع مشابه
Chern Classes in Deligne Cohomology for Coherent Analytic Sheaves
In this article, we construct Chern classes in rational Deligne cohomology for coherent sheaves on a smooth compact complex manifold. We prove that these classes satisfy the functoriality property under pullbacks, the Whitney formula and the Grothendieck-Riemann-Roch theorem for an immersion. This answers the question of proving that if F is a coherent sheaf of rank i on X, the topological Cher...
متن کاملStiefel-whitney Classes for Coherent Real Analytic Sheaves
We develop Stiefel-Whitney classes for coherent real analytic sheaves and investigate their applications to analytic cycles on real analytic manifolds.
متن کاملDescent for Coherent Sheaves on Rigid-analytic Spaces
If one assumes k to have a discrete valuation, then descent theory for coherent sheaves is an old result of Gabber. Gabber’s method was extended to the general case by Bosch and Görtz [BG]. Our method is rather different from theirs (though both approaches do use Raynaud’s theory of formal models [BL1], [BL2], we use less of this theory). We think that our approach may be of independent interes...
متن کاملLinear Koszul duality, II: coherent sheaves on perfect sheaves
In this paper we continue the study (initiated in [MR1]) of linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras. We construct this duality in a very general setting, and prove its compatibility with morphisms of vector bundles and base change.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Manuscripta Mathematica
سال: 2023
ISSN: ['0025-2611', '1432-1785']
DOI: https://doi.org/10.1007/s00229-023-01484-5